Structure Cristalline du Metatitanate de Thallium Tl₂TiO₃

A. VERBAERE, M. DION ET M. TOURNOUX

Laboratoire de Chimie Minérale B, U.E.R. de Chimie, Université de Nantes, B.P. 1044-Nantes Cedex 44037-France

Received November 23, 1973

Le titanate de thallium Tl₂TiO₃ a été préparé. La symétrie est orthorhombique, groupe spatial Pnam, avec les paramètres: a = 12.41 Å, b = 9.615 Å, c = 3.752 Å. L'étude structurale montre que dans Tl_2TiO_3 le titane exerce la coordinence 5, le polyèdre est une bipyramide trigonale. Le doublet solitaire du thallium joue un rôle stéréochimique dans la structure.

A thallium titanate oxide Tl₂TiO₃ has been prepared. It is orthorhombic, space group Pnam, with unit cell dimensions a = 12.41 Å, b = 9.615 Å, c = 3.752 Å. The structure contains double chains of edge sharing TiO_5 trigonal bipyramids, in the z direction. In this compound, thallium I has a stereochemically active lone pair. There are four oxygens bonded to thallium, all to one side.

Introduction

Il est intéressant d'examiner l'évolution de la coordinence du titane en fonction du rapport M/Ti dans les titanates de métaux monovalents. La coordinence 6 est fréquente pour des rapports M/Ti relativement faibles: $Na_2Ti_3O_7$ (1), $Na_2Ti_6O_{13}$ (2), $Tl_2Ti_4O_9$ (3). La coordinence 5 a été mise en évidence dans $K_2Ti_2O_5$ (4); le polyèdre de coordination est alors une bipyramide trigonale. Elle se rencontre également dans $K_2 TiO_3$ (5), isotype de K_2SnO_3 (6) dans lequel l'étain IV est à l'intérieur d'une pyramide à base carrée. Pour des rapports M/Ti plus élevés apparaît un environnement tétraédrique du titane. Cette coordinence 4 se manifeste dans la structure cristalline de $K_6 Ti_2 O_7$ (7) et vraisemblablement dans celle de la phase triclinique K₄TiO₄ (8).

Parmi les éléments lourds des groupes B, le thallium au degré d'oxydation I se situe dans une zone frontière en ce qui concerne le comportement du doublet 6s². Les composés oxygénés peu riches en thallium sont souvent isotypes des composés du potassium et du rubidium de même formulation. Au contraire, dans les composés riches en thallium, nous avons montré que le doublet solitaire (lone

2. Données Cristallographiques

L'étude préliminaire sur chambre de Weissenberg et de précession de Buerger permet d'obtenir les constantes cristallographiques du réseau qui sont données dans le Tableau I.

pair) joue un rôle stéréochimique important. C'est le cas par exemple pour Tl_3BO_3 (9), Tl_3PO_4 (10), et Tl_4O_3 (11).

La détermination de la structure de 'Tl₂TiO₃, qui n'est pas isotype des titanates, stannates ou zirconates alcalins, présente donc un double intérêt.

Partie Expérimentale

1. Préparation

Nous avons décrit dans une publication antérieure le mode de préparation et les propriétés des titanates de thallium I (12). Tl_2TiO_3 se prépare en portant pendant 4 hr à 600°C un mélange de TiO₂ et de Tl₂CO₃ en léger excès (5%) par rapport aux proportions stoechiométriques. Le point de fusion de Tl_2TiO_3 est 634 \pm 2°C. Les cristaux sont obtenus par refroidissement lent d'un mélange fondu ayant une teneur en Tl₂O supérieure à celle correspondant à la composition Tl_2TiO_3 .

DONNÉES CRISTALLOGRAPHIQUES DE Tl₂TiO₃ª

Symétrie orthorhombique $a = 12.41 \pm 0.01$ $b = 9.615 \pm 0.008$ $c = 3.752 \pm 0.002$ $d_{cale} = 7.50$ $d_{exp} = 7.46$ Z = 4

^a Groupe spatial = *Pnam*, No. 62 de "International Tables for X Ray Crystallography."

Nous avons dans un premier temps retenu le premier des deux groupes spatiaux possibles, *Pnam* et $Pna2_1$, pour les raisons sujvantes.

- (a) Les tests physiques de doublage de fréquence et de piezoélectricité sont négatifs.
- (b) Les plans hk0 et hk2 présentent une très grande similitude, ainsi que les plans hk1 et hk3.

3. Mesure des Intensités

Un cristal ayant la forme d'un prisme droit, de dimensions $0.018 \times 0.0032 \times 0.0015$ cm, a permis l'enregistrement des intensités par un diffractomètre automatique NONIUS CAD 3 utilisant le rayonnement K_{α} du molybdène. Le coefficient d'absorption linéaire correspondant est égal à 750 cm⁻¹. Les faces du cristal sont par ordre d'importance décroissante (110), $(1\overline{10})$, et (001).

Les intensités ont été mesurées, avec un balayage θ -2 θ , dans un demi espace correspondant à un domaine de θ compris entre 3.5 et 35°. Après traitement des 4750 mesures obtenues, nous avons conservé 444 réflexions indépendantes satisfaisant au critère $\sigma(I)/I < 0.25$ avec:

 $\sigma(I)/I$

$$= [I_M + \tau^2 (F_1 + F_2)]^{1/2} / [I_M - \tau (F_1 + F_2)]$$

où τ , égal ici à $\frac{1}{2}$, est le rapport temps de comptage de la réflexion, I_M , sur temps de comptage du fond continu, $(F_1 + F_2)$.

En raison de la faible taille du cristal, l'absorption a été négligée et les seules corrections effectuées sur les intensités sont celles de Lorentz-polarisation.

Résolution et Affinement de la Structure

Les atomes de thallium et de titane ont été localisés par interprétation de la fonction de Patterson. Les facteurs de diffusion ont été calculés à l'aide des valeurs des coefficients de Vand, Eiland, et Pepinsky (13) tabulés par Moore (14). Les corrections de dispersion anomale ont été appliquées selon les valeurs $\Delta f'$ et $\Delta f''$ extraites de "International Tables for X Ray Crystallography."

Atome	x^{a}	у	z	$B \text{ ou } Beq^b \\ (\text{Å}^2)$	$\beta_{11}{}^c$	β ₂₂	β_{33}	β_{12}
Tl 1	0.0957(2)	0.1318(2)	4	1,40	0.0021(1)	0.0046(2)	0.0214(14)	-0.0006(2)
TI 2	0.3439(2)	0.2592(3)	34	1.47	0.0018(1)	0.0049(3)	0.0270(15)	-0.0002(1)
Тi	0.0956(8)	0.4576(8)	34	0.7(1)				
01	0.151(3)	0.285(4)	34	1.3(6)				
O 2	0.301(3)	0.085(4)	1	0.8(5)				
O 3	0.051(3)	0.453(3)	14	0.8(5)				

TABLEAU II

Paramètres Atomiques de Tl_2TiO_3 (Tous les Atomes sont en Position 4 *c* du Groupe Spatial *Pnam*)

^a Quand le paramètre est affiné, l'écart type portant sur le dernier chiffre figure entre parenthèses.

^b Beq représente la valeur isotrope B qui correspond au tenseur β_{ij} d'anisotropie.

^c Tous les atomes sont localisés sur un miroir et $\beta_{13} = \beta_{23} = 0$. Le facteur d'agitation thermique anisotrope s'écrit:

$$\exp\left[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+2hk\beta_{12})\right].$$

VERBAERE, DION, ET TOURNOUX

TABLEAU III

	I	1							no -2	
HK FO FC	HK FC	FCHK	FO	FCHK	FO	FCHK	FO	ю нк	FO FC	
L = 0	08 207	226 12 4	183	176 4 1	263	237 2 9	44	47 2 8	168 173	
4 0 435 429	18 55	57 0 5	356	379 5 1	97	87 8 9	181	168 3 8	46 51	
12 0 148 183	4 8 146	165 3 5	.68	67 8 1	288	257 12 9	107	100 6 8	70 75	
16 0 190 201	56 49	60 4 5	269	270 9 1	47	42 3 10	121	61 6 0	94 90	
3 1 35 33	11 8 59	22 2 2	02	63111 1	52	.24 . 10	86		09 96	
4 1 335 322	12 8 92	99 7 2	77	75 0 2	150	164 5 10	58	53 0 10	70 70	
5 1 129 116	108 81	04 21 5	62	67 1 2	91	85 7 10	89	84 5 10	10 12	
8 1 329 318		66112 5	155	151 2 2	85	89 9 10	62	57 7 10	62 58	
91 49 50	1 9 125	154 16 5	152	156 3 2	149	144 1 11	74	64 9 10	80 69	
10 1 122 169	12 9 113	116 1 6	138	137 4 2	129	123 2 11	90	87 0 11	65 61	
0 2 107 220	3 10 61	70 26	101	96 6 2	194	177 3 11	53	58 1 11	75 74	
1 2 112 119	7 10 101	98 3 6	69	67 7 2	146	131 6 12	116	105 3 11	83 85	
2 2 125 129	9 10 69	67 4 6	128	122 9 2	117	110 10 12	94	86 8 12	75 61	
3 2 188 186	11 10 62	60 5 6	105	99 10 2	151	137 2 13	108	100 0 13	72 73	
4 2 178 171	12 10 67	70 6 6	48	48 11 2	59	57	<u> </u>		L = 4	
5 2 54 48	2 11 74	102 8 6	170	161 12 2	85	79 2 0	268	241 0 0	295 274	
6 2 247 232	3 11 62	68 11 6	64	64 13 2	84	83 6 0	104	94 4 0	185 176	
7 2 176 162	2 12 56	60112 6	86	8/16 2	15	7310 0	64	61 12 0	91 99	
9 2 132 133	5 12 61	120 0 7	20		271	1/214 0	117	110 4 1	137 134	
10 2 154 166		52 27	27	77 2 2	62	59111	40	44 8 1	100 157	
10 2 75 68	10 12 100	98 3 7	115	113153	159	154 2 1	101	95 0 2	9≰ 90 80 88	
16 2 21 27	2 13 112	115 5 7	82	82 6 3	123	116 3 1	133	124 3 2	82 87	
1 3 220 235	L = 1	67	195	186 7 3	67	60 6 1	224	208 4 2	64 66	
2 3 334 301	2 0 427	400 7 7	125	120 9 3	61	57 7 1	108	99 6 2	101 101	
3 3 71 72	60 163	142 9 7	96	92 10 3	71	67 9 1	89	82 7 2	83 81	
5 3 202 197	80 53	49 10 7	179	172 11 3	106	100 10 1	178	173 9 2	67 68	
6 3 152 147	10 0 99	87 11 7	62	58 14 3	142	138 13 1	84	81 10 2	86 84	
7 3 78 75	14 0 167	163 13 7	59	57 15 3	76	79 14 1	65	60 1 3	86 99	
83 42 41	18 0 108	114 14 7	66	64 18 3	104	101 1 2	118	120 2 3	146 167	
9 3 67 68	0 1 90	90 18	370	8/ 2 4	109	111 2 2	122	164 5 3	90 94	
10 3 75 81	1 1 159	108 2 8	237		69	64 5 2	170	14 6 3	12 10	
11 3 93 117	121 $1/2$	105 5 8	48	47 6 4	267	250 6 2	71	63 1 1 7	60 60	
15 5 87 90		60 6 8	104		201	65 7 2	27	69 2 4	82 89 50 65	
0 4 35 35	6 1 361	322 10 8	63	54 9 4	55	51 8 2	72	71	141 150	
2 4 139 143	7 1 165	146 11 8	58	52 10 4	220	213 9 2	93	92 10 4	129 133	
3 4 91 95	9 1 129	116 14 8	125	120 14 4	73	74 10 2	49	49 2 5	117 131	
5 4 84 85	10 1 268	246 1 9	74	69 1 5	58	58 11 2	110	105 5 5	66 65	
6 4 302 311	11 1 46	41 29	77	77 2 5	222	220 14 2	93	91 65	62 54	
7 4 82 80	12 1 56	46 3 9	41	38 5 5	106	104 15 2	63	71 06	61 63	
94 56 61	13 1 114	107 5 9	56	53 6 5	91	89 0 3	207	226 1 6	86 93	
10 4 214 254	14 1 80	82 6 9	161	153 7 5	55	22 1 3	71	78 36	108 117	
14 4 87 86	19 1 59	55 10 9	134	117 8 2	40	221 2 2	92	97 6 6	86 87	
1 5 74 74		204 1 10	60	61 9 2	11		70	127 7 6	67 66	
2 5 265 2/8	2 2 274	2/0 2 10	107	102 10 5	57	54 7 3	53	49 5 7	10 61	
4 7 6 7 60	4 2 132	123 6 10	42	40 14 5	110	113 6 3	45	41 2 4	10 11 50 57	
6 5 108 109	5 0 07	254 7 10	100	70 0 6	110	112110 3	51	50 6 7	79 72	
7 5 62 62	6 2 109	97 8 10	66	57 1 6	150	153 12 3	81	74 0 8	116 117	
8 5 44 44	172 111	98 9 10	96	91 2 G	72	72 16 3	77	84 4 8	78 86	
9 5 77 86	8 2 11	5 104 11 10	81	72 3 6	182	186 4 4	171	181 4 9	87 84	
10 5 56 70	9 2 14	2 129 0 11	90	84 4 6	66	66 8 4	217	220 8 9	109 110	
14 5 129 133	10 2 7	5 69 1 11	103	99 6 6	148	143 12 4	131	130 0 10	79 87	
18 5 69 89	11 2 15	1 141 3 11	109	111 7 0	103	98 0 5	240	250	L = 5	
0 6 141 145	12 2 5	9 53 4 11	70	64 9 8	82	100 2 2	40	40 20	124 124	
1 6 184 192	14 2 121	124 7 11	65	61 10 0	109	10014 9	60	63 21	69 69	
2 6 91 91	15 2 94	92 13 11	83	79117 6	67	71 0 5	55	54 10 1	00 07	
7 0 211 230	18 2 89		78		86	88112 5	115	112 2 2	74 95	
40 04 0) 66 166 174		120 7 12	2(51 2 7	87	8616 5	116	119 5 5	89 91	
7 6 106 174	23 5		27	at 4 7	94	92 1 6	88	95 6 3	97 114	
9 6 73 AA	$\begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 15 \end{bmatrix}$	3 152 12 12	63	53 5 7	123	119 2 6	63	64 4 3	65 71	
10 6 97 127	1 4 3 220	218 0 13	106	98 7 7	90	89 4 6	83	84 4 4	88 97	
13 6 122 117	163 11	3 109 4 13	74	68 8 7	126	119 -5 6	71	71 8 4	114 122	
17 6 69 81	173 7	2 68 1 14	66	63 9 7	91	87 8 6	114	114 0 5	118 136	
1 7 103 107	93 6	2 55 3 14	62	54 11 7	84	8112 6	66	63 4 5	92 100	
2 7 103 108	10 3 8	2 74 4 14	61	56 12 7	.74	75 2 7	52	24 6 7	82 75	
4 7 107 111	12 3 110	0 103 8 14	79	71 0 8	191	109 3 7	19	57 28	89 97	
5 7 132 141	13 3 6	68	<u>L = á</u>	2 1 2	48	4/12/	127	1341		
7 7 90 106	16 3 11	4 115 0 0	574	519 4 8	140	80 7 7	17/	24		
8 7 118 141	3 4 3	57 4 0	356	31312 0	78	79 4 7	66	67		
9 / /8 102 11 7 70 07	4 4 27	2 2/2 12 0	167	122 3	60	5610 7	135	127		
12 7 05 04			177	63 4 9	134	131 1 8	62	63		
12 1 07 00	104 32	ו בןייכ י	20	021 7 2						

Les coordonnées relatives des atomes d'oxygène ont été déterminées à l'aide d'une série de Fourier différence tridimensionnelle. Les affinements par moindres carrés ont été réalisés à l'aide du programme SFLS 5 (15) qui minimise la fonction $\sum \omega(|FO| - Z|FC|)^2$, où ω est le facteur de pondération, FO et FC les facteurs de structure observés et calculés et Z la constante d'échelle. FO est à une échelle arbitraire et Z est un paramètre affiné.

L'affinement des coordonnées atomiques et des facteurs d'agitation thermique isotrope conduit aux facteurs de reliabilité:

$$R = \sum ||FO| - Z|FC|| \sum |FO| = 0.077$$
$$RW = \left[\frac{\sum \omega(|FO| - Z|FC|)^2}{\sum \omega(|FO|)^2}\right]^{1/2} = 0.093.$$

A ce stade l'introduction comme paramètres supplémentaires des facteurs d'agitation thermique anisotrope du thallium conduit aux valeurs: R = 0.063; RW = 0.079. Le test de Hamilton (16) montre que l'introduction de ces nouveaux paramètres est significative à un seuil de probabilité inférieur à 0.005.

Les coordonnées relatives et les facteurs d'agitation thermique sont donnés au Tableau II. Le Tableau III permet de comparer les facteurs de structure observés et calculés. Les valeurs relativement élevées de *R* et *RW* sont vraisemblablement dues à un léger phénomène d'absorption.

Nous avons testé dans le groupe $Pna2_1$ l'effet d'une faible déformation noncentrosymétrique de la structure obtenue: les atomes reviennent en position centrosymétrique ou bien oscillent de part et d'autre de

FIG. 1a. Projection, selon l'axe c, de la structure de Tl₂TiO₃.

FIG. 1b. Représentation des polyèdres TiO_5 et de l'environnement des atomes de thallium.

telles positions sans abaissement des facteurs R et RW. La structure doit donc être considérée comme centrosymétrique.

TABLEAU IV

Distances et Angles Interatomiques⁴ dans Tl_2TiO_3

Distances ^b	(Å)	Angles ^b (°)				
Tl 1O 1°	2.48(2)	O 1-Tl 1-O 1(3)	98.3(9)			
Tl 1-O 2	2.59(3)	O 1-Tl 1-O 2	80.3(8)			
Tl 1-O 3	3.13(3)					
Tl 2–O 1	2.41(4)	O 2-Tl 2-O 2(3)	93.6(8)			
Tl 2-O 2 ^c	2.57(2)	O 2-TI 2-O 1	82.1(8)			
Tl 2–O 3(2)	3.22(3)					
Ti–O 3°	1.95(1)	O 3–Ti–O 1	95(1)			
Ti-O 1	1.80(4)	O 3-Ti-O 2(1)	103(1)			
Ti-O 2(1)	1.77(4)	O 3-Ti-O 3(4)	76(1)			
Ti-O 3(4)	2.02(4)	O 1-Ti-O 2(1)	111(1)			
O 3-O 1	2.77(4)	O 1-Ti-O 3(4)	138(1)			
O 3–O 2(1)	2.91(4)	O 2(1)-Ti-O 3(4)	111(1)			
O 3–O 3(4)	2.45(4)					
O 1–O 2(1)	2.94(5)					
O 1–O 3(4)	3.57(5)					
O 2(1)-O 3(4)	3.13(5)					

^a Le nom des atomes est éventuellement suivi d'un indice entre parenthèses qui traduit, à partir des coordonnées xyz du Tableau II, les positions équivalentes selon: (1) = $(\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} + z)$; (2) = $(\frac{1}{2} - x, y - \frac{1}{2}, z + \frac{1}{2})$; (3) = $(x, y, z \pm 1)$; (4) = $(\bar{x}, 1 - y, \bar{z})$.

^b L'écart type portant sur le dernier chiffre figure entre parenthèses.

^c Cette distance intervient deux fois dans l'environnement du métal.

FIG. 2. Double file de bipyramides trigonales orientée selon l'axe c.

Description de la Structure

Les Figs. 1a et 1b représentent la projection de la structure suivant [001]. Le Tableau IV indique les angles et distances interatomiques. Le polyèdre de coordination du titane est une bipyramide trigonale distordue. Les bipyramides TiO_5 s'associent par mise en commun d'arêtes et de sommets pour former des doubles files [TiO_3] parallèles à l'axe c. Dans une double file (Fig. 2) deux bipyramides associant une arête se déduisent l'une de l'autre par un axe hélicoïdal 2₁.

La déformation du polyèdre est une conséquence de la répulsion titane-titane et les distances titane-oxygène sont comprises entre 1.77 et 2.02 Å.

Les atomes de thallium relient ces doubles files entre elles par l'intermédiaire de courtes liaisons thallium-oxygène. Chaque thallium a trois très proches voisins appartenant à deux doubles files différentes, les distances TI-O étant comprises entre 2.41 et 2.59 Å. Le thallium exerce une liaison plus lâche avec un quatrième atome d'oxygène, la distance TI-O étant alors de 3.13 Å pour TI 1, et 3.22 Å pour TI 2. La Fig. 3 représente l'environnement oxygéné de TI 1 et TI 2. Dans les deux cas, les quatre atomes d'oxygène sont situés d'un même côté par rapport au thallium, ce

Distances Titane–Oxygene						
Composé	Distances Ti–C	extremes D (Å)	Distance moyenne Ti-O (Å)	Polyèdre de coordination		
Tl ₂ TiO ₃	1.77	2.02	1.90	Bipyramide trigonale		
$K_2Ti_2O_5(4)$	1.57	2.00	1.85	Bipyramide trigonale		
La ₂ TiO ₅ (20)	1.74	2.03	1.93	Bipyramide trigonale		
$Ba_2TiO(Si_2O_7)$ (21)	1.66	2.00	1.93	Pyramide à base carrée		
Y ₂ TiO ₅ (22)	1.78	1.94	1.89	Pyramide à base carrée		

TABLEAU V

FIG. 3. Environnement oxygéné des atomes de thallium: (a) Tl 1; (b) Tl 2.

qui indique que les doublets solitaires des atomes de thallium I jouent un rôle stéréochimique dans la structure; ils se rassemblent dans des tunnels parallèles à l'axe c.

Discussion

 Tl_2TiO_3 emprunte certains éléments structuraux à $K_2Ti_2O_5$ (4). En effet, les doubles files de bipyramides trigonales, qui sont isolées dans Tl_2TiO_3 , mettent en commun des sommets pour former des couches $[Ti_2O_5]_{\infty}$ dans le dititanate. La coordinence 5, généralement rare, est cependant assez fréquente dans le cas des composés oxygénés du vanadium (17-19). Il est intéressant de remarquer que le métavanadate hydraté KVO_3 , $H_2O(19)$ contient des doubles files de bipyramides trigonales analogues à celles mises en évidence dans TI_2TiO_3 .

Le Tableau V résume les informations sur les distances titane-oxygène dans cinq structures où le titane exerce la coordinence 5.

Les très courtes distances thallium-oxygène sont du même ordre de grandeur que celles obtenues dans des composés oxygénés du thallium I dans lesquels le doublet solitaire joue un rôle stéréochimique.

Dans une prochaine publication, nous décrirons la structure de Tl_2SnO_3 , qui n'est pas isotype de Tl_2TiO_3 , mais dont la structure contient elle aussi des doubles files $[MO_3]_{\infty}$. Ces dernières résultent de l'association d'octaèdres SnO_6 peu déformés. Dans Tl_2SnO_3 comme dans Tl_2TiO_3 , le doublet solitaire du thallium joue un rôle stéréochimique.

References

- 1. S. ANDERSSON ET A. D. WADSLEY, Acta Cryst. 14, 1245 (1961).
- 2. S. ANDERSSON ET A. D. WADSLEY, Acta Cryst. 15, 194 (1962).
- 3. A. VERBAERE ET M. TOURNOUX, Bull. Soc. Chim. France 4, 1237 (1973).
- 4. S. ANDERSSON ET A. D. WADSLEY, Acta Chem. Scand. 15, 663 (1961).
- 5. M. DEVALETTE, Thèse Bordeaux (1970).
- 6. B. M. GATEHOUSE ET D. J. LLOYD, J. Solid State Chem. 2, 410 (1970).
- 7. W. SCHARTAN ET R. HOPPE, Naturwiss. 60, 105 (1973).
- 8. M. TOURNOUX ET M. DEVALETTE, Bull, Soc. Chim. France 8, 2337 (1965).
- R. MARCHAND, Y. PIFFARD ET M. TOURNOUX, C. R. Acad. Sci. Paris 276 C, 177 (1973).
- 10. M. GANNE ET M. TOURNOUX, C. R. Acad. Sci. Paris 276 C, 1755 (1973).
- 11. R. MARCHAND ET M. TOURNOUX, C. R. Acad. Sci. Paris 277 C, 863 (1973).
- 13. A. VERBAERE ET M. TOURNOUX, Bull. Soc. Chim. France 3, 896 (1972).
- 13. V. VAND, P. F. EILAND ET R. PEPINSKY, Acta Cryst. 10, 303 (1957).
- 14. F. H. MOORE, Acta Cryst. 16, 1169 (1963).
- 15. C. T. PREWITT, Fortran IV Full Matrix Crystallographic Least Squares Program, SFLS 5 (1966).

- 16. W. C. HAMILTON, Acta Cryst. 18, 502 (1965).
- 17. F. HOLZBERG, A. REISMAN, M. BERRY, ET M. BERHENBILT, J. Amer. Chem. Soc. 78, 1536 (1956).
- 18. H. T. EVANS ET S. BLOCK, Inorg. Chem. 5, 1808 (1966).
- 19. H. T. EVANS, Z. Krist. 114, 257 (1960).
- 20. M. GUILLEN ET E. F. BERTAUT, C.R. Acad. Sci. Paris 262 B, 962 (1966).
- 21. P. B. MOORE ET J. LOUISNATHAN, Science, 156, 1361 (1967).
- 22. W. G. MUMME ET A. D. WADSLEY, Acta Cryst. B 24, 1327 (1968).